The Blume-Emery-Griffiths model at an infinitely many ground states interface and exponential decay of correlations at all non-zero temperatures

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys. A: Math. Gen. 369609
(http://iopscience.iop.org/0305-4470/36/37/301)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.86
The article was downloaded on 02/06/2010 at 16:34

Please note that terms and conditions apply.

The Blume-Emery-Griffiths model at an infinitely many ground states interface and exponential decay of correlations at all non-zero temperatures

Gastão A Braga and Paulo C Lima
Departamento de Matemática, UFMG, Caixa Postal 1621, 30161-970, Belo Horizonte, MG, Brazil

Received 17 June 2003, in final form 23 July 2003
Published 2 September 2003
Online at stacks.iop.org/JPhysA/36/9609

Abstract

In this paper we study the spin-spin correlation function decay properties of the Blume-Emery-Griffiths (BEG) model with Hamiltonian located on the interface between the disordered and the anti-quadrupolar phases. On this interface, the BEG model has infinitely many ground state configurations. We show that, for any dimension d, there exists a parameter value, y_{d}, below which the spin-spin correlation function with zero boundary condition decays exponentially fast at all non-zero temperatures. This result suggests that reentrant behaviour predicted by mean-field and numerical calculations may be absent for those values of parameters.

PACS numbers: $05.70 . \mathrm{F}, 64.60,64.70,07.20 . \mathrm{M}$

1. Introduction

The Blume-Emery-Griffiths (BEG) model was introduced in the 1970s in order to explain some of the physical properties of He^{3} and He^{4} mixtures [1] and since then it has attracted a lot of attention and has been used in other applications such as ternary fluids [2, 3] and Langmuir mono-layers [4, 5]. Its Hamiltonian is given by

$$
H(\sigma)=-J \sum_{(i, j)} \sigma_{i} \sigma_{j}-K \sum_{(i, j)} \sigma_{i}^{2} \sigma_{j}^{2}+D \sum_{(i)} \sigma_{i}^{2}
$$

where $i \in \mathbb{Z}^{d}$ is a lattice site, (i, j) is a nearest-neighbour bond, σ_{i} is the spin variable at the lattice site i taking values $0,+1,-1$. The parameters J, K, D satisfy $J>0,-\infty<K, D<$ $+\infty$. Defining $y=K / J$ and $x=-D /(2 d J)$, we rewrite the Hamiltonian as follows:

$$
\begin{equation*}
H(\sigma)=-J \sum_{(i, j)}\left[\sigma_{i} \sigma_{j}+y \sigma_{i}^{2} \sigma_{j}^{2}+x\left(\sigma_{i}^{2}+\sigma_{j}^{2}\right)\right] \equiv \sum_{(i, j)} H_{i, j}(\sigma) \tag{1}
\end{equation*}
$$

Without loss of generality, we will assume $J=1$. The phase diagram in the $x y$-plane at $T=0$ is obtained by minimizing the spin pair energy $H_{i j}(\sigma)$ and it consists of three distinct regions:

- $F=\{x, y \in \mathbb{R}: 1+y+2 x>0$ and $1+y+x>0\} ;$
- $D=\{x, y \in \mathbb{R}: 1+y+2 x<0$ and $x<0\}$;
- $A=\{x, y \in \mathbb{R}: 1+y+x<0$ and $x>0\}$.
F is the ferromagnetic region, D is the disordered region and A is the anti-quadrupolar region. In A, as well as on its boundaries $A-D$ and $F-D$, the model has infinitely many ground state configurations. In A, one can use the polymer expansion to obtain the low-temperature Gibbs measures [6] associated with two distinct equivalence classes of ground states. New features may show up on the phase boundaries. For instance, for the two-dimensional model in the interface $A-D$, mean-field calculations indicate the presence of reentrance although this is not confirmed by numerical renormalization group calculations (see [7, 8] and references therein). One possible way to decide whether or not there is reentrant behaviour is to look at the decay of the spin-spin correlation function. This point of view was developed in [9] and their theorem 1 gives sufficient conditions for the exponential decay in the two-dimensional model, for all non-zero temperatures.

Following the strategy adopted in [9], in this paper we study the spin-spin correlation function of the d-dimensional BEG model at the interface $x=0$ and $y<-1$. Specifically, we provide a value y_{d} of y, given explicitly as a function of d, below which there is exponential decay of correlations for all non-zero temperatures. More specifically, our goal in this paper is to prove the following result:

Theorem 1.1. Consider the d-dimensional BEG model located on the $A-D$ interface. If β and y are such that

$$
\begin{equation*}
4 d^{2} \mathrm{e}^{\beta(1+y)}\left(1-\mathrm{e}^{-\beta}\right)<1 \tag{2}
\end{equation*}
$$

then the 0 -boundary condition spin-spin correlation function decays exponentially fast:

$$
\begin{equation*}
\left\langle\sigma_{i} \sigma_{j}\right\rangle^{0} \leqslant C(\beta, y) \mathrm{e}^{-m(\beta, y)\|i-j\|} \tag{3}
\end{equation*}
$$

where $C(\beta, y)>0$ and

$$
\begin{equation*}
\mathrm{e}^{-m(\beta, y)}=4 d^{2} \mathrm{e}^{\beta(1+y)}\left(1-\mathrm{e}^{-\beta}\right) \tag{4}
\end{equation*}
$$

Although the BEG model has been studied by many authors using different techniques, as far as we know, there are no rigorous results for the model on the disordered-antiquadrupolar interface which holds for any space dimension. As a consequence of the above theorem, we will show below that, at any dimension d, there is a value y_{d} of y so that the spin-spin correlation function decays exponentially fast for any $y<y_{d}$ and any $\beta \geqslant 0$. This result indicates the absence of reentrant behaviour for $y<y_{d}$.

Corollary 1.1. Consider the d-dimensional BEG model located on the $A-D$ interface. There exists a negative value y_{d} such that the 0 -boundary condition spin-spin correlation function decays exponentially fast for any $y<y_{d}$ and for any $\beta \geqslant 0$.

Proof. Assume theorem 1.1 and let $f(\beta, y)=\mathrm{e}^{\beta(1+y)}\left(1-\mathrm{e}^{-\beta}\right)$. Then, for each $y<-1$ fixed, the maximum of f is attained at $\beta^{*}=\ln \frac{y}{1+y}$. The function $h(y)=f\left(\beta^{*}(y), y\right)$ is clearly a monotone decreasing function of $|y|$. Hence, if we define y_{d} as the solution of $h(y)=\frac{1}{4 d^{2}}$, then $4 d^{2} f(\beta, y)<1$ for all $y<y_{d}$ and all $\beta \geqslant 0$, i.e., inequality (2) is satisfied, leading to the exponential decay of the spin-spin correlation function at all non-zero temperatures, as long as $y<y_{d}$.

This paper is organized as follows: in section 2 we give some definitions and prove two Griffiths-type inequalities which will be used in section 3 to prove theorem 1.1. We point
out that even though its proof is based on a high-temperature approach, the results apply to the whole range of temperatures. In section 4 we make some concluding remarks. For completeness, in the appendix we give a 'low-temperature' version of theorem 1.1. It leads to a temperature range already covered by the results of theorem 1.1.

2. Preliminaries

Given any finite subset $\Lambda \subset Z^{d}$, we define Λ^{*} as the set of all unordered nearestneighbour bonds (i, j) with i and j in Λ. By the boundary of $\Lambda, \partial \Lambda$, we mean the set of all points $i \in \mathbb{Z}^{d}-\Lambda$, such that $\|i-j\|=1$ for some j in Λ, where, for any $i=\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{Z}^{d},\|i\| \equiv \sum_{k=1}^{d}\left|i_{k}\right|$. By Ω_{Λ} we mean the set of all spin configurations $\{-1,0,1\}^{\Lambda}$. In what follows, we will take $x=0$ in the Hamiltonian given by (1).

Given any $\Lambda \subset \mathbb{Z}^{d}$ and any $s \in \Omega_{\partial \Lambda}$ we define the Hamiltonian with s boundary condition

$$
\begin{equation*}
H_{\Lambda, s}(\sigma)=\sum_{(i, j) \in \Lambda^{*}} H_{i, j}(\sigma)+\sum_{(i, j): i \in \Lambda, j \in \partial \Lambda,\|i-j\|=1}\left(\sigma_{i} s_{j}+y \sigma_{i}^{2} s_{j}^{2}\right) \tag{5}
\end{equation*}
$$

The finite volume expectation is

$$
\begin{equation*}
\langle.\rangle_{\Lambda, s}=\frac{\sum_{\sigma \in \Omega_{\Lambda}} \mathrm{e}^{-\beta H_{\Lambda, s}(\sigma)}}{Z_{\Lambda, s}} \tag{6}
\end{equation*}
$$

where $Z_{\Lambda, s}$ is the partition function:

$$
\begin{equation*}
Z_{\Lambda, s}=\sum_{\sigma \in \Omega_{\Lambda}} \mathrm{e}^{-\beta H_{\Lambda, s}(\sigma)} \tag{7}
\end{equation*}
$$

Remark. If we drop the second sum in (5) we get the free boundary condition. In the interface we are considering, the energies of the spin pairs 00 and $0 \pm$ are zero. Therefore, the ' 0 ' and the 'free' boundary conditions are equivalent. For any $A \subset \mathbb{Z}^{d}$, by $\langle.\rangle_{A}$ and Z_{A} we mean $\langle.\rangle_{A, 0}$ and Z_{A}^{0}, respectively.
We now obtain a graph representation for the Gibbs factor $\mathrm{e}^{-\beta H_{\Lambda}}$. We start by finding a representation for the Gibbs factor of a spin pair:

$$
\begin{aligned}
\mathrm{e}^{\beta\left(\sigma_{i} \sigma_{j}+y \sigma_{i}^{2} \sigma_{j}^{2}\right)} & =\left(1+\sigma_{i} \sigma_{j} \sinh \beta+\sigma_{i}^{2} \sigma_{j}^{2}(\cosh \beta-1)\right)\left(1+\left(\mathrm{e}^{\beta y}-1\right) \sigma_{i}^{2} \sigma_{j}^{2}\right) \\
& =1+a \sigma_{i} \sigma_{j}+b \sigma_{i}^{2} \sigma_{j}^{2} \equiv 1+\rho_{i j}(\sigma)
\end{aligned}
$$

where

$$
\begin{equation*}
\rho_{i j}=a \sigma_{i} \sigma_{j}+b \sigma_{i}^{2} \sigma_{j}^{2} \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
a=\mathrm{e}^{\beta y} \sinh \beta \quad \text { and } \quad b=\mathrm{e}^{\beta y}(\cosh \beta-1) . \tag{9}
\end{equation*}
$$

Let $\rho_{i j}(\sigma)$ be defined by (8), where a and b are given by (9). Then

$$
\begin{align*}
\mathrm{e}^{-\beta H_{\Lambda}(\sigma)} & =\prod_{(i, k) \in \Lambda^{*}} \mathrm{e}^{-\beta H_{i, j}(\sigma)}=\prod_{(i, k) \in \Lambda^{*}}\left(1+\rho_{i j}(\sigma)\right) \\
& =1+\sum_{k \geqslant 1} \sum_{\left(i_{i}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right) \in \Lambda^{*}} \rho_{i_{1}, j_{1}}(\sigma) \ldots \rho_{i_{k}, j_{k}}(\sigma) \tag{10}
\end{align*}
$$

where the second sum is over all un-repeated k-uples $\left(i_{1}, j_{1}\right) \cdots\left(i_{k}, j_{k}\right)$. With each term $\rho_{i_{1}, j_{1}} \ldots \rho_{i_{k}, j_{k}}$ in (10) we associate a geometric object, Γ, which we call a graph. This graph consists of points of Λ and nearest-neighbour bonds of Λ^{*}, connecting them. The set of points
of Γ will be just the union of the points i_{l} and $j_{l}, l=1, \ldots, k$ and the set of bonds will be just the union of $\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)$, which we will denote by Γ^{*}. To represent geometrically the graph Γ, first we mark with a dot each one of the distinct points of Γ and then we draw a line connecting two points m and n if (m, n) is one of the bonds of Γ^{*}. In what follows, $\left|\Gamma^{*}\right|$ will denote the cardinality of Γ^{*}, which we also call the size of Γ, and $|\Gamma|$ will denote the number of points in Γ. Therefore, if we associate 1 with the graph with no bonds, we have the following graph representation for (10):

$$
\begin{equation*}
\mathrm{e}^{-\beta H_{\Lambda}(\sigma)}=\sum_{\Gamma} \prod_{\left(i_{l}, j_{l}\right) \in \Gamma^{*}} \rho_{i_{l}, j_{l}}(\sigma) \tag{11}
\end{equation*}
$$

where the sum is over all above-defined graphs Γ in Λ.
Given $A \subset \Lambda$ and $\left\{n_{i} \in \mathbb{N}: i \in A\right\}$, define $\sigma^{A}=\prod_{\{i \in A\}} \sigma_{i}^{n_{i}}$. Griffiths' first inequality holds in this case. Here we state this inequality whose proof can be found in [9], proposition A1.

Proposition 2.1. For all $\beta \geqslant 0, y \in \mathbb{R}$ and $\Lambda \subset \mathbb{Z}^{d}$ we have

$$
\begin{equation*}
\left\langle\sigma^{A}\right\rangle_{\Lambda} \geqslant 0 \tag{12}
\end{equation*}
$$

Now we fix a bond (i, j) in Λ^{*} and replace the parameters a and b, both appearing in the definition of $\rho_{i j}$, given by (8), by $a_{i j}$ and $b_{i j}$ respectively. Regarding Z_{Λ} as a function of $a_{i j}$ and $b_{i j}$, we have:

Proposition 2.2. The finite volume partition function Z_{Λ} is a non-decreasing function of $a_{i j} \geqslant 0$ and $b_{i j} \geqslant 0$.

Proof. Using the graph representation (11) to rewrite the partition function as a function of a and b, we take derivatives to obtain

$$
\begin{align*}
& \frac{\partial Z_{\Lambda}}{\partial a_{i j}}=Z_{\bar{\Lambda}}\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\bar{\Lambda}} \tag{13}\\
& \frac{\partial Z_{\Lambda}}{\partial b_{i j}}=Z_{\bar{\Lambda}}\left\langle\sigma_{i}^{2} \sigma_{j}^{2}\right\rangle_{\bar{\Lambda}} \tag{14}
\end{align*}
$$

where $\bar{\Lambda}=\Lambda-\{i, j\}$. Using the positivity of correlations given by proposition 2.1, we get the result.

3. Proof of theorem 1.1

We first state a result which will be used below and whose proof can be found, for instance, in [10], proposition V.7A.3, p 465.

Proposition 3.1. The number N_{n} of connected subgraphs Γ of size $\left|\Gamma^{*}\right|=n$ that pass through a fixed vertex i_{0} is no bigger than $\left(4 d^{2}\right)^{n}$.

Theorem 1.1 is proved by using a high-temperature type argument along the lines developed in [11]. We note that, for the two-point function $\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\Lambda}$, only those graphs Γ having a connected component Γ_{1} containing i and j will give a non-zero contribution to the numerator of $\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\Lambda}$. For such graphs Γ, we have the following decomposition $\Gamma=\Gamma_{1} \cup \Gamma_{2}$, where
$\Gamma_{1} \cap \Gamma_{2}=\emptyset$. Let $Z_{\Lambda-\Gamma_{1}}$ be the partition function for the region $\Lambda-\Gamma_{1}$, obtained from Λ by suppressing the lattice points contained in Γ_{1}, namely,

$$
\begin{aligned}
Z_{\Lambda-\Gamma_{1}} & =\sum_{\{\sigma\} \in \Omega_{\Lambda-\Gamma_{1}}} \mathrm{e}^{-\beta \sum_{(i, j) \in\left(\Lambda-\Gamma_{1}\right)^{*}} H_{i j}(\sigma)} \\
& =\sum_{\Gamma_{2} \subset\left(\Lambda-\Gamma_{1}\right)} \sum_{\{\sigma\} \in \Omega_{\Lambda-\Gamma_{1}}} \prod_{(i, j) \in \Gamma_{2}^{*}} \rho_{i j} .
\end{aligned}
$$

From the graph representation (11) and from the relation above, we get that the spin-spin correlation $\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\Lambda}$ can be written as

$$
\begin{equation*}
\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\Lambda}=Z_{\Lambda}^{-1} \sum_{\Gamma_{1} \supset\{i, j\}}\left(\sum_{\{\sigma\} \subset \Omega_{\Gamma_{1}}} \sigma_{i} \sigma_{j} \prod_{(k, l) \in \Gamma_{1}^{*}} \rho_{k, l}(\sigma)\right) Z_{\Lambda-\Gamma_{1}} \tag{15}
\end{equation*}
$$

To proceed, we observe that

$$
\begin{equation*}
0 \leqslant \frac{Z_{\Lambda-\Gamma_{1}}}{Z_{\Lambda}} \leqslant 3^{-\left|\Gamma_{1}\right|} \tag{16}
\end{equation*}
$$

which follows from proposition 2.2 applied to all a and b associated with bonds (k, l) for which either k or l belongs to Γ_{1}. From (15) and (16), we have

$$
\begin{equation*}
\left|\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\Lambda}\right| \leqslant \sum_{\Gamma_{1} \supset\{i, j\}}\left(\sum_{\{\sigma\} \subset \Omega_{\Gamma_{1}}}\left|\sigma_{i} \sigma_{j}\right| \prod_{(k, l) \in \Gamma_{1}^{*}}\left|\rho_{k, l}(\sigma)\right|\right) 3^{-\left|\Gamma_{1}\right|} . \tag{17}
\end{equation*}
$$

The minimal size of a graph Γ_{1} containing i and j is given by $\|i-j\|$. Since $\left|\sigma_{i}\right| \leqslant 1$ and $\left|\rho_{i, j}(\sigma)\right| \leqslant a+b$, it follows from (17) that

$$
\begin{aligned}
\left|\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\Lambda}\right| & \leqslant \sum_{\Gamma_{1} \supset\{i, j\}}\left(\sum_{\{\sigma\} \subset \Omega_{\Gamma_{1}}}\left|\sigma_{i} \sigma_{j}\right| \prod_{(k, l) \in \Gamma_{1}^{*}}\left|\rho_{k, l}(\sigma)\right|\right) 3^{-\left|\Gamma_{1}\right|} \\
& \leqslant \sum_{n \geqslant\|i-j\| \|} \sum_{\Gamma_{1} \supset\{i, j\},\left|\Gamma_{1}^{*}\right|=n}\left(\sum_{\{\sigma\} \subset \Omega_{\Gamma_{1}}}\left|\sigma_{i} \sigma_{j}\right| \prod_{(k, l) \in \Gamma_{1}^{*}}\left|\rho_{k, l}(\sigma)\right|\right) 3^{-\left|\Gamma_{1}\right|} \\
& \leqslant \sum_{n \geqslant\|i-j\|}\left(\sum_{\Gamma_{1} \supset\{i, j\},\left|\Gamma_{1}^{*}\right|=n} 1\right)(a+b)^{n} \leqslant \sum_{n \geqslant\|i-j\|} N_{n}(a+b)^{n}
\end{aligned}
$$

where N_{n} is the number of finite connected graphs of size n passing through i. From proposition 3.1, this number can be bounded from above by $\left(4 d^{2}\right)^{n}$. Using this bound and the definition of a and b (see (9)), we get

$$
\left|\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\Lambda}\right| \leqslant \sum_{n \geqslant\|i-j\|}\left(4 d^{2} \mathrm{e}^{\beta(1+y)}\left(1-\mathrm{e}^{-\beta}\right)\right)^{n}
$$

Since the above bound is uniform in Λ, the bound (3) holds true if the condition (2) is satisfied. The pre-factor $C(\beta, y)$ (see equation (3)) is equal to

$$
\sum_{n \geqslant 0}\left(4 d^{2} \mathrm{e}^{\beta(1+y)}\left(1-\mathrm{e}^{-\beta}\right)\right)^{n} .
$$

4. Concluding remarks

We have shown that, for any dimension d, there exists a value y_{d} of y below which the spin-spin correlation function of the BEG model located at the disordered-antiquadrupolar interface with zero boundary condition decays exponentially fast at all non-zero temperatures. In [8] (see figure 5a, p 485), comparative (Monte Carlo simulation, renormalization group and mean-field approximations) temperature T versus crystalline field x phase diagrams for the two-dimensional BEG model are shown, for values of y equal to -1 and -2 . While mean-field calculations suggest reentrant behaviour, Monte Carlo and RG computations go in the opposite direction. When restricted to two dimensions, our results give $y_{2} \simeq-6.395$, see corollary 1.1, indicating that there is no such behaviour for $y<-6.395$. The results of [9], which hold only for two dimensions, give $y_{2} \simeq-2.187$. Although their upper bound for y is better than ours, we point out that our approach is technically simpler than theirs and holds for any dimension d.

Although it is clear, we remark that the value of y_{d} in corollary 1.1 gets closer to -1 if sharper upper bound estimates for N_{n} are given (see proposition 3.1). Finally, it is interesting to know whether or not the model, located on the $A-D$ interface, has a unique Gibbs measure for all non-zero temperatures.

Acknowledgments

One of the authors, PCL, is grateful to the Brazilian funding agencies FAPEMIG and CNPq for financial support.

Appendix

For completeness, in this appendix we obtain a result similar to theorem 1.1 by performing a low-temperature expansion along the lines of section 3 . We recall that the energy of spin pairs is $H_{i j}(00)=H_{i j}(0+)=H_{i j}(0-)=0, H_{i j}(++)=H_{i j}(--)=-(y+1), H_{i j}(+-)=-(y-1)$. Given a configuration σ in Ω_{Λ}, we define the following subset of Λ^{*} :

$$
\begin{equation*}
\left\{(k, l): H_{k l}(\sigma) \neq 0\right\} \tag{A.1}
\end{equation*}
$$

With the set given by (A.1) we associate a geometric object, Γ, which we call a graph. This graph consists of all bonds of the set (A.1) and their end points. By construction, the spin pairs in Γ are either,++-- or +- . Also, there is no interaction between spin variables inside Γ and those outside because, by construction, 0 is the boundary condition on the boundary of Γ. By the spin flipping symmetry of the Hamiltonian, only those configurations σ whose associated graph Γ has a connected component, Γ_{1}, containing i and j will contribute for the numerator of the spin-spin correlation function. This allows us to factorize any configuration σ_{Λ}, which contributes to the numerator of the spin-spin correlation, as ($\sigma_{\Lambda-\Gamma_{1}}, \sigma_{\Gamma 1}$), where $\sigma_{\Lambda-\Gamma_{1}} \in \Omega_{\Lambda-\Gamma_{1}}$ and $\sigma_{\Gamma_{1}} \in\{-1,1\}^{\Gamma_{1}}$, for some connected graph, Γ_{1}, containing both i and j. There is no interaction between the spins in $\sigma_{\Lambda-\Gamma_{1}}$ and the spins in $\sigma_{\Gamma_{1}}$. This observation is the basis of our low-temperature expansion.

Theorem A.1. Consider the d-dimensional BEG model located on the $A-D$ interface. If β and y are such that

$$
\begin{equation*}
4 e d^{2} \mathrm{e}^{(1+y) \beta}<1 \tag{A.2}
\end{equation*}
$$

then the 0 -boundary condition spin-spin correlation function decays exponentially fast:

$$
\left\langle\sigma_{i} \sigma_{j}\right\rangle^{0} \leqslant \mathrm{e}^{-m(\beta, y)\|i-j\|}
$$

where $C(\beta, y)>0$ and

$$
\mathrm{e}^{-m(\beta, y)}=4 e d^{2} \mathrm{e}^{(1+y) \beta}
$$

Proof. There is a graph representation to the Gibbs factor

$$
\mathrm{e}^{-\beta H_{\Lambda}(\sigma)}=\prod_{(i, j) \in \Gamma^{*}} \mathrm{e}^{-\beta H_{i j}} \equiv \prod_{(i, j) \in \Gamma^{*}} \rho_{i j}(\sigma)
$$

which naturally leads to the following representation for spin-spin correlation:

$$
\begin{equation*}
\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\Lambda}=Z_{\Lambda}^{-1} \sum_{\Gamma_{1} \supset\{i, j\}}\left(\sum_{\sigma \in\{-1,1\}^{\Gamma_{1}}} \sigma_{i} \sigma_{j} \prod_{(k, l) \in \Gamma^{*}} \rho_{k, l}(\sigma)\right) Z_{\Lambda-\Gamma_{1}} \tag{A.3}
\end{equation*}
$$

Note that for fixed Γ_{1}, we have

$$
\begin{equation*}
Z_{\Lambda} \geqslant \sum_{\{\sigma\}}^{*} \mathrm{e}^{-\beta H(\sigma)}=Z_{\Lambda-\Gamma_{1}} 2^{\frac{|\Gamma|}{2}} \tag{A.4}
\end{equation*}
$$

where in the sum \sum^{*} we restrict ourselves to those configurations for which $\sigma_{\Gamma_{1}}$ is a typical anti-quadrupolar ground state, namely, each spin pair is of the form ± 0. From equations (A.3) and (A.4), since $\left|\rho_{k, l}(\sigma)\right| \leqslant \mathrm{e}^{\beta(1+y)},\left|\sigma_{i} \sigma_{j}\right| \leqslant 1$ and $\sum_{\sigma \in\{-1,1\}^{\Gamma_{1}}} 1=2^{\left|\Gamma_{1}\right|} \leqslant$ $2^{2\left|\Gamma_{1}^{*}\right|}$, then for any Λ, we have

$$
\begin{aligned}
\left|\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\Lambda}\right| & \leqslant \sum_{\Gamma_{1} \supset\{i, j\}} \mathrm{e}^{(1+y) \beta\left|\Gamma_{1}^{*}\right|} \mathrm{e}^{\left|\Gamma_{1}{ }^{*}\right|} \\
& \leqslant \sum_{n \geqslant\|i-j\|} N_{n} \mathrm{e}^{n((1+y) \beta+1)} \\
& \leqslant \sum_{n \geqslant\|i-j\|}\left(4 e d^{2} \mathrm{e}^{(1+y) \beta}\right)^{n} .
\end{aligned}
$$

Remark. Observe that condition (2) is stronger than condition (A.2) in the sense that if the latter is satisfied then the former is also satisfied.

References

[1] Blume M, Emery V J and Griffiths R B 1971 Phys. Rev. A 41071
[2] Mukamel D and Blume M 1974 Phys. Rev. A 1010
[3] Furman D, Dattagupta S and Griffiths R B 1977 Phys. Rev. B 15441
[4] Andelman D 1989 J. Am. Chem. Soc. 1116536
[5] Pelizzola A, Pretti M and Scalas E 2000 J. Chem. Phys. 1128126
[6] Braga G, Lima P and O’Carroll M 2000 Rev. Math. Phys. 12779
[7] Osório R, Oliveira M J and Salinas S R 1989 J. Phys.: Condens. Matter 16887
[8] Branco N S 1996 Physica A 232477
[9] Braga G A, Ferreira S J and Barreto F C S 1994 J. Stat. Phys. 76815
[10] Simon B 1993 The Statistical Mechanics of Lattice Gases vol 1 (Princeton, NJ: Princeton University Press)
[11] Paes Leme P J 1978 Ann. Phys., NY 115367

